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Abstract

Biogeographic patterns for marine fishes and scleractinian 
stony corals are well-established, but it is still unclear wheth-
er these patterns apply to the understudied marine inverte-
brates. Here we investigate the distribution of zoantharians 
(=zoanthids), an order of cnidarians that are distributed 
globally from tropical coral reefs to deep temperate oceans. 
We examined the available literature, along with new re-
cords and morphological and DNA sequence data, to es-
tablish their first global biogeographical assessment. Two 
striking results emerged that contrast with previously known 
marine biogeographical patterns. The first was that several 
zoantharian genera are cosmopolitan, inhabiting most bio-
geographic provinces within and between ocean basins. 
Although the highest diversity was observed in the Indo-Pa-
cific Ocean (IPO), concordant with biogeographic assays of 
reef fishes and stony corals, the distribution of genera was 
not significantly different between the Atlantic (ATO) and the 
IPO. Secondly, there were multiple sibling species complex-
es between the ATO and the IPO. At species and population 
scales, a long pelagic larval duration, asexual reproduction 
modes, and rafting abilities, may at least partly explain the 
low levels of genetic differences between ocean basins. 
As some zoantharian species can play a significant role in 
phase shifts, filling knowledge gaps on species distributions 
is essential to support monitoring of reef ecosystems.

Highlights

•	 Our study revealed that several Zoantharia genera, 
and most families, are globally distributed.

•	 This is highly distinct from the pattern previously 
observed for common reef animals, such as stony 
corals and fishes, where the Indo-Pacific Ocean has 
several times the number of familes/genera com-
pared to the Atlantic Ocean.

•	 Some zoantharian species, especially in the genera 
Palythoa and Zoanthus, have dispersal strategies 
that allow for broad distributions within ocean ba-
sins, while the vicariant events of the rise of the Isth-
mus of Panama and the appearance of the Benguela 
upwelling likely prompted the speciation of sibling 
lineages between the oceans.
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Introduction
Understanding the processes that produce and maintain 
biodiversity is one of the main goals of evolutionary biolo-
gists. Parapatry has been suggested as one of the key spe-
ciation mechanisms in the marine realm, occurring when 
divergence in alternate habitats can continue in the face 
of ongoing gene flow (Gavrilets et al. 2000). Most biogeo-
graphic barriers in the marine realm are soft and species 
with extensive larval dispersal abilities may readily tra-
verse such barriers (Rocha and Bowen 2008). For instance, 
widespread marine species usually have larvae that are 
transported by sea currents across great ocean distanc-
es, with some dispersing for more than 5000 km from the 
central to eastern Pacific during El Niño episodes (Lessios 
and Robertson 2006). However, physical barriers cannot 
be crossed by marine taxa and may lead to allopatric spe-
ciation via vicariant isolation (Coyne and Orr 2004).

One relatively recent vicariant isolation event was the 
rise of the Isthmus of the Panama, which removed the 
tropical connection between the Atlantic and Pacific ba-
sins (~3.5 mya; O’Dea et al. 2016). This event led to the 
evolution of sibling species pairs in several marine groups, 
including fishes and sea urchins (Jordan 1908; Bernardi et 
al. 2008; Lessios 2008). However, no such clear pattern has 
been observed for benthic cnidarians such as scleractin-
ian stony corals (Fukami et al. 2004) or Millepora fire corals 
(Arrigoni et al. 2018). Some stony coral genera have a high 
genetic divergence between ocean basins among genera/
families. However, zoantharians (= zoanthids; Cnidaria; An-
thozoa; Zoantharia), hexacorals related to stony corals, are 
an exception to this pattern as several sibling species (or 
species complexes) inhabit distinct ocean basins yet share 
highly similar DNA sequences (Reimer et al. 2010; Reimer et 
al. 2012a; Santos et al. 2016; Dudoit et al. 2022). To date, no 
detailed investigations of these zoantharian sibling species 
across the order have been performed, and their diversity 
and overall distributions remain uncertain. Zoantharians 
are among the most abundant non-calcifying hexacorals in 
shallow-water ecosystems, with colonies of some species 
able to cover dozens of square meters in tropical and tem-
perate regions (Burnett et al. 1997; Oigman-Pszczol et al. 
2004), and there is also high diversity known from deep to 
abyssal waters (Carlgren 1901; Reimer et al. 2007a).

Although biogeographical patterns of many shallow-wa-
ter reef groups such as fishes and stony corals are rela-
tively well-known (Randall 1998; Briggs and Bowen 2012; 
Veron et al. 2015; Cowman et al. 2017), zoantharians and 
many other marine invertebrates are understudied in most 
regions (Knowlton 2001), and this extends especially into 
deeper waters (Reimer et al. 2019). An exception to that 
is the zoantharian distribution across Atlantic subtropical 
and tropical provinces (Santos et al. 2016, 2019), which 
have some biogeographic partitions similar to reef fishes 
(Floeter et al. 2008), stony corals (Veron et al. 2015), and 
fire corals (De Souza et al. 2017). Examples of this concor-
dance among organismal groups include both range limits 
and biodiversity patterns: 1) Thermohaline properties of 

South Atlantic water masses may limit the southern dis-
tribution of tropical zoantharians in this region (Santos et 
al. 2016), and 2) the Caribbean province is the zoantharian 
biodiversity center of the Atlantic, while oceanic islands 
have the lowest species richness (Santos et al. 2019). In 
contrast to prevailing biogeographic patterns, a lower en-
demism rate among provinces was observed in Atlantic 
Zoantharia compared to other common reef groups. The 
most widespread species were Palythoa caribaeorum Du-
chassaing & Michelotti, 1860, P. grandiflora (Verrill, 1900), 
and Zoanthus sociatus (Ellis, 1768), all with amphi-Atlan-
tic distributions (Santos et al. 2019). Despite these ba-
sin-wide efforts, no study has connected the biogeograph-
ic patterns of zoantharians on a global scale.

Due to their wide distribution, zoantharians provide 
opportunities to examine evolution at large geographical 
scales (Swain 2010; Santos et al. 2019, 2024). The order 
has nine families and is subdivided into the suborders 
Brachycnemina and Macrocnemina (Fig. 1). Most species 
of Brachycnemina are associated with the Symbiodiniace-
ae microalgae (Muscatine and Hand 1958; LaJeunesse et 
al. 2018), also known as zooxanthellae, and are restricted 
to shallow waters. On the other hand, macrocneminans 
have a broader distribution into the deep sea and polar re-
gions, and are mostly azooxanthellate (Swain 2010). Addi-
tionally, several Macrocnemina genera, and one Brachyc-
nemina genus (Acrozoanthus), display epizoic symbioses, 
in which the polyps attach to other benthic invertebrates, 
including crabs, hydroids, octocorals, sponges, or tubes 
of polychaete worms (West 1979; Sinniger et al. 2010; 
Swain 2010; Kise et al. 2023). These associations are of-
ten obligatory, and the zoantharian species is only found 
associated with a specific genus or family of invertebrate 
hosts. For example, Umimayanthus chanpuru Montenegro, 
Sinniger & Reimer, 2015 is always associated with spong-
es, while Epizoanthus illoricatus Tischbierek, 1930 is only 
found growing on eunicid worm tubes.

Herein, we used morphological and molecular data 
combined with a comprehensive literature review to in-
vestigate the global biogeography of Zoantharia. We also 
aimed to indicate which are the zoantharian sibling spe-
cies complex between the Atlantic (ATO) and the Indo-Pa-
cific (IPO) ocean basins. We then discussed hypotheses 
of how ecological traits influence dispersal and evolution 
of zoantharians in (primarily) shallow and (where possi-
ble) deep waters, illuminating the processes that led to 
these biogeographical patterns.

Methods
Shallow water and deep-sea surveys

Surveys were conducted using snorkeling or SCUBA diving at 
depths of 0 to 40 m in five regions: Yucatan, Mexico (2013), 
Hong Kong, Hong Kong SAR (2015 and 2024), Cebu, Phil-
ippines (2017), South Africa (2019), Bali, Indonesia (2019 
and 2024) and Kenting, Taiwan (2024). Whenever possible, 
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we followed the roving observer technique to observe as 
many species as possible (Schmitt et al. 2002). Addition-
ally, in situ high-resolution images were taken, and a small 
fragment of the colony was collected (non-lethal sampling) 
and preserved in 90–99% ethanol for further analyses (Sup-
pl. material 1). We also examined zoantharian specimens 
deposited at the Bernice Pauahi Bishop Museum (BPBM) in 
O‘ahu, Hawai‘i. To improve the understanding of deep-sea 
(>200 m) zoantharians, we investigated specimens deposit-
ed at the Smithsonian National Museum of Natural History 
(SNMNH) collected by the Okeanos 2016 expedition in the 
Pacific Ocean, and at the National Museum of Rio de Janei-
ro (MNRJ) collected in Brazilian waters (Suppl. material 1).

Literature review and biogeographical 
analyses

We compiled records of Zoantharia for global marine bio-
geographical provinces (Suppl. material 2). We followed 

the provinces as described in Briggs and Bowen (2012) 
because this work has a special focus on reef ecosys-
tems, and the provinces defined by >10% endemism align 
well with phylogeographic breaks recovered in fishes and 
crustaceans (Bowen et al. 2016; Iacchei et al. 2016). Due 
to the high number of inadvertent Zoantharia species re-
descriptions combined with a lack of surveys focusing on 
this group (Burnett et al. 1997; Hibino et al. 2013a, b; San-
tos et al. 2019), data were analyzed at the taxonomic level 
of families and genera, and not to species level. We then 
summarized the relationship among global biogeographi-
cal provinces based on the number of shared zoantharian 
taxa common to the pair of areas using Jaccard dissim-
ilarity index (Jaccard 1908) and Unweighted Pair Group 
Method with Arithmetic Mean (Sneath and Sokal 1973). 
We also applied a non-metric multidimensional scaling 
analysis (nMDS) of the dissimilarity distances to plot sim-
ilarities in zoantharian composition by ocean basin (ATO 
or IPO) and seawater temperature (tropical or temperate). 
Statistical differences were tested with pairwise Adonis 

Figure 1. Representatives of the nine zoantharian families. Abyssoanthidae (A. Abyssoanthus convallis Reimer & Sinniger, 2010); Epizo-
anthidae (B. Epizoanthus paguricola Roule, 1900 associated with a hermit crab), Hydrozoanthidae (C. Hydrozoanthus gracilis (Lwowsky, 
1913) with hydrozoan), Microzoanthidae (D. Microzoanthus sp.), Nanozoanthidae (E. Nanozoanthus), Neozoanthidae (F. Neozoanthus 
uchina Reimer, Irei &. Fujii, 2012), Parazoanthidae (G. Parazoanthus swiftii (Duchassaing de Fonbressin & Michelotti, 1860) symbiotic 
with sponges), Sphenopidae (H. Palythoa tuberculosa (Esper, 1805)), and Zoanthidae (I. Zoanthus sociatus (Ellis, 1768)). Image credits: 
JD Reimer (A and E), T Moritaki (B), MEA Santos (C, F, and I), T Fujii (D), and MV Kitahara (G and H).
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(Martinez Arbizu 2020) with the package vegan 2.6-10 
(Oksanen et al. 2025). Due to the patchiness of deep-sea 
data (Reimer and Sinniger 2010; Carreiro-Silva et al. 2017; 
Reimer et al. 2019b), we focused analyses of the bioge-
ography and sibling species complexes only in the shal-
low-water data.

Morphology, phylogenetic analyses, and 
sibling species complexes

Morphology was used to identify zoantharian specimens 
to the lowest taxonomic level possible using the follow-
ing characters: number of tentacles, size range of oral 
disk, oral disk color, and form of the polyp as ‘liberae’, 
‘intermediae’, or ‘immersae’ (Pax 1910; West 1979; Bur-
nett et al. 1997; Reimer 2010; Reimer et al. 2013). Addi-
tionally, we retrieved molecular sequences from NCBI for 
the most common markers for Zoantharia: mitochondrial 
cytochrome oxidase subunit I (COI) and 16S ribosomal 
DNA (16S rDNA), and the nuclear ribosomal internal tran-
scribed spacer (ITS rDNA). The sequences and species are 
listed in Suppl. material 3. We selected mainly sequenc-
es from previous authors’ publications, and for which we 
were confident in species identifications (e.g. had vouch-
er specimens). Sequences were aligned using Geneious 
v8.1 (Kearse et al. 2012), using the global alignment tool 
with free-end gaps and default settings. A concatenated 
alignment was generated and missing data was replaced 
with “N” (excluding gaps). All output alignments were vi-
sually inspected and manually curated, totaling 120 se-
quences and 3,219 sites. Phylogenetic reconstructions 
were performed using this concatenated alignment for 
maximum-likelihood (ML; 1000 bootstrap replicates) in 
Geneious v8.1, with the GTR model of nucleotide substi-
tution as selected using TOPALi v2.5 (Milne et al. 2009). 
The newick dataset is available at the Figshare reposito-
ry (https://doi.org/10.6084/m9.figshare.30811127). We 
defined a sibling species complex in the phylogeny as 
sister clades composed of at least one ATO and one IPO 
species (or species’ group) that had a similar overall mor-
phology (partial or total overlap of at least three out of the 
four following traits: number of tentacles, size range of 
oral disk, oral disk color, and form of the polyp). Morpho-
logical characters for described species and distribution 
data were compiled from the literature and newly collect-
ed specimens (Suppl. material 4).

Results
Biogeography of zoantharians

Our results revealed that 6 out of the 8 Zoantharia 
families reported in shallow-waters were cosmopoli-
tan (Figs 2, 3; Suppl. material 2), with the exception of 
Nanozoanthidae and Neozoanthidae, which, so far, only 
have been reported in the IPO (but see Discussion; they 

are most likely also distributed in the ATO). The diversity 
center for Zoantharia in shallow waters was the INP prov-
ince in the Central IPO (Fig. 2A, B). Within the ATO, CAR 
was the province with the highest diversity. However, a 
different pattern is observed for deep waters (Fig. 2C, D) 
where the most diverse provinces were SNJ (7 genera), 
LUS (6), and HAW (5).

With the exception of the families Abyssoanthidae, 
Epizoanthidae, and Parazoanthidae, zoantharians were 
restricted to shallow waters (Fig. 3). Parazoanthidae 
was the most diverse family (16 genera) and the most 
widely distributed, with reports across 19 provinces 
(Figs 3, 4). Of the 31 Zoantharia genera, 14 were found 
only in shallow waters,  11 only in deep waters,  and 6 
across both depth zones (Suppl. material 2).  Among the 
20 genera observed in shallow waters,  6 were so far 
only reported to the IPO and one to the ATO.

The clustering of shallow biogeographical provinc-
es retrieved two main groups; one with all warm global 
provinces, in addition to the temperate provinces AGU, 
COR, and LUS, and the other with the remaining temper-
ate/polar provinces (Fig. 4). Adonis analyses showed 
no significant differences in the composition of genera 
and families between the ATO and IPO, yet tropical and 
temperate provinces had significant differences (Suppl. 
material 5).

Phylogeny and sibling species complexes

The phylogenetic reconstruction confirmed that the sub-
order Brachynemina is monophyletic (families Neozoan-
thidae, Sphenopidae, and Zoanthidae), while the suborder 
Macrocnemina (families Epizoanthidae, Hydrozoanthidae, 
Microzoanthidae, Nanozoanthidae, and Parazoanthidae) 
is paraphyletic with the family Hydrozoanthidae residing 
within brachycnemic zoantharians (Fig. 5). Although the 
family Abyssoanthidae is not assigned to any suborder, 
species were phylogenetically within Macrocnemina. At 
least four shallow-water families had sibling species com-
plexes (Suppl. material 4).

In the suborder Brachycnemina, three genera from 
two families had species reported in ATO and IPO. 
These three genera had sibling species groups: Paly-
thoa from the family Sphenopidae, and Zoanthus and 
most likely Isaurus (discussed below) from Zoanthidae 
(Fig. 6; Suppl. material 4). The suborder Macrocnemina 
had at least two sibling species groups, one from the 
family Hydrozoanthidae and another from Parazoanthi-
dae. With the exception of Hydrozoanthus antumbrosus 
(Swain 2009), which has so far only been reported in the 
CAR, zoantharian sibling species had extensive distri-
butions including at least two biogeographic provinces. 
The sibling pair P. caribaeorum (ATO) and P. tuberculo-
sa (Esper, 1805) (IPO) had the most extensive distribu-
tion among zoantharians analyzed herein, with reports 
across all tropical and subtropical provinces (Fig. 6, 
Suppl. material 4).

https://doi.org/10.6084/m9.figshare.30811127
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Discussion
Global marine biogeography

We observed a higher diversity of Zoantharia in shallow 
waters in the IPO compared to the ATO, with the global 

hotspot in the INP province (Fig. 2A, B), similarly to glob-
al patterns observed for marine fishes, corals, and mac-
roinvertebrates (Roberts et al. 2002; Bowen et al. 2013; 
Briggs and Bowen 2013; Veron et al. 2015). Nevertheless, 
the composition of genera and families between the IPO 
and ATO was not significantly different (Fig. 4 and Suppl. 
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Figure 3. Global distribution of zoantharians for each family in shallow (A–I) and deep (J–R) waters. Colors represent the number 
of families/genera reported for each province. Subtropical and tropical provinces were Ascension (ASC), Brazilian (BRA), Caribbe-
an (CAR), Lusitania (LUS), Saint Helena (STH), Tropical Eastern Atlantic (TEA), Galapagos (GAL), Hawaiian (HAW), Indo-Polynesian 
(INP), Red Sea (RES), Sino-Japanese (SNJ) and Western Indian Ocean (WIN), while in temperate/polar waters were Agulhas Prov-
ince (AGU), Antarctic Province (ANT), California (CAL), Cortez (COR), Easter Atlantic Boreal (EAB), Falkland Islands (FAL), Juan 
Fernandez (JUF), Oregon (ORE), Panamanian (PAN), Peru-Chilean (PEC), Southeastern Australian (SOA), Southern Chile (SOC), and 
Tierra del Fuego (TIF).
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material 5), contrasting with prevailing biogeographical 
patterns that indicate strong vicariance between these 
ocean basins (Cowman and Bellwood 2013; Costello et al. 
2017). Most, if not all, zoantharian families had a global 
distribution in shallow waters, which is remarkable and 
distinct from most other common marine animals.

We hypothesize that low or moderate genetic diver-
sity may partially explain this pattern of low divergence 

between ocean basins. Anomalously low mutation rates 
have been observed in a diversity of taxa including plants 
(Wolf et al. 1987; Xu et al. 2019), cnidarians (Tseng et 
al. 2005) and vertebrates (Avise et al. 1992; Feng et al. 
2017). A low mtDNA mutation rate may prevail in most 
anthozoan orders, including stony corals and zoantha-
rians (Shearer et al. 2002; Huang et al. 2008). Likewise, 
hybridization and incomplete lineage sorting may obscure 

Figure 4. Relationship of the global biogeographic provinces based on Zoantharia distribution in shallow waters. Total number of 
provinces records for (A) each family (left) and genera (right). The thickness of the barplot for each family is proportional to its num-
ber of genera. Taxa with no records in shallow waters were reported only in the deep sea. The relationship among biogeographical 
provinces was summarized for families (B) and genera (C), based on a non-metric multidimensional scaling analysis (left) and Jac-
card dissimilarity index and Unweighted Pair Group Method with Arithmetic Mean (right). Tropical/subtropical provinces are shown in 
pink, and temperate/polar provinces in blue. Provinces from the Atlantic Ocean are indicated by a triangle, and from the Indo-Pacific 
by a circle. Subtropical and tropical provinces were Ascension (ASC), Brazilian (BRA), Caribbean (CAR), Lusitania (LUS), Saint Helena 
(STH), Tropical Eastern Atlantic (TEA), Galapagos (GAL), Hawaiian (HAW), Indo-Polynesian (INP), Red Sea (RES), Sino-Japanese (SNJ) 
and Western Indian Ocean (WIN), while in temperate/polar waters they they were Agulhas Province (AGU), Antarctic Province (ANT), 
California (CAL), Cortez (COR), Easter Atlantic Boreal (EAB), Falkland Islands (FAL), Juan Fernandez (JUF), Oregon (ORE), Panamanian 
(PAN), Peru-Chilean (PEC), Southeastern Australian (SOA), Southern Chile (SOC), and Tierra del Fuego (TIF).
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evolutionary relationships for many Palythoa and Zoan-
thus lineages (Reimer et al. 2007b; Shiroma and Reimer 
2010; Mizuyama et al. 2018), as well as for some stony 
coral species (Vollmer and Palumbi 2002; Johnston et al. 
2017; Terraneo et al. 2025). Additionally, many Zoantharia 
lineages have evolved high ecological plasticity, adapting 
to distinct habitats/environment settings. For instance, 
endosymbiosis with Symbiodiniaceae and epizoism have 
been gained and lost multiple times in several distinct 
genera/families (Swain 2010; Kise et al. 2023). However, 
genomic studies of zoantharians are still scarce (Fourreau 
et al. 2023; Yoshioka et al. 2024), hampering our ability 
to compare their gene repertoire with other groups such 
as stony corals. For example, the evolutionary mecha-
nisms that promote a lower mutation rate in zoantharian 

lineages, and/or facilitate generalist ecological strategies. 
Therefore, further research on this topic is needed to shed 
light on the puzzling evolution of Zoantharia and the ap-
parent unusual low levels of DNA evolutionary rates be-
tween the IPO and ATO.

Which processes might have driven the 
sibling species pattern?

There was a striking pattern in zoantharians having sibling 
evolutionary lineages between ocean basins (Figs 5, 6), 
which is far different from that observed in stony corals 
and fire corals (Fukami et al. 2004; Arrigoni et al. 2018). In a 
genetic survey of 35 marine vertebrates and invertebrates, 

Figure 5. Phylogeny of the order Zoantharia. Phylogenetic tree obtained from a concatenated alignment of the mitochondrial markers 
of COI, 16S-rDNA, and the nuclear ITS-rDNA. Values at nodes represent ML bootstrap values >75%, respectively. Species distributed in 
the Atlantic Ocean are indicated by a triangle, and in the Indo-Pacific Ocean by a circle. Sibling species complexes are indicated with 
curly brackets. *Family Parazoanthidae.



Frontiers of Biogeography 19, 2026, e174247

Global biogeography of zoantharians

9

Figure 6. Global distribution of zoantharian sibling species complexes (A) and for each family (B–E). Colors represent the number of 
species reported for each province. Subtropical and tropical provinces were Ascension (ASC), Brazilian (BRA), Caribbean (CAR), Lusi-
tania (LUS), Saint Helena (STH), Tropical Eastern Atlantic (TEA), Galapagos (GAL), Hawaiian (HAW), Indo-Polynesian (INP), Red Sea 
(RES), Sino-Japanese (SNJ) and Western Indian Ocean (WIN), while in temperate/polar waters were Agulhas Province (AGU), Antarctic 
Province (ANT), California (CAL), Cortez (COR), Easter Atlantic Boreal (EAB), Falkland Islands (FAL), Juan Fernandez (JUF), Oregon 
(ORE), Panamanian (PAN), Peru-Chilean (PEC), Southeastern Australian (SOA), Southern Chile (SOC), and Tierra del Fuego (TIF).



Frontiers of Biogeography 19, 2026, e174247

Maria E. A. Santos et al.

10

Selkoe et al. (2014) reported that at most 50% of popula-
tion dispersal could be attributed to pelagic larval duration 
(PLD). Research on zoantharian PLDs is limited, but an 
extended planktonic larval phase of more than 100 days 
is known for P. tuberculosa (Polak et al. 2011). Plankton 
tows also indicate long PLDs for the families Sphenopidae 
and Zoanthidae (Ryland et al. 2000). Asexual reproduction 
may promote local dispersal and increase substrate oc-
cupancy (Ryland 1997), and this trait has been described 
for genera such as Palythoa, Parazoanthus, and Zoanthus 
(Garrabou 1999; Acosta et al. 2005a; Acosta and González 
2007). Additionally, some zoantharians have a high raft-
ing potential (Santos and Reimer 2018). Many coastal 
organisms, including stony corals and reef fishes, are 
able to disperse for hundreds to thousands of kilometers 
attached to drift material such as volcanic pumice, sea-
weed, logs, or man-made objects (Jokiel 1990; Hoeksema 
et al. 2012). Combined, a long PLD, asexual reproduction 
modes, and rafting, at least partly explain the apparent low 
levels of genetic differentiation between ocean basins and 
the widespread distribution of several species (Fig. 6).

The low molecular and morphological divergence ob-
served between zoantharian sibling species may also re-
flect a similar use of resources (e.g., related niches). For 
example, P. tuberculosa is often the most abundant zoan-
tharian in shallow waters of the IPO, including Okinawa (Irei 
et al. 2011; Yang et al. 2013), Taiwan (Reimer et al. 2011a; 
Reimer et al. 2017a), Malaysia (Wee et al. 2017), and Red 
Sea (Reimer et al. 2017b). A similar trend was observed in 
the ATO sibling P. caribaeorum, which is widespread along 
the Brazilian and Caribbean coasts (Suchanek and Green 
1981; Acosta et al. 2005b; Santos et al. 2016; Reimer et 
al. 2018), the Mid-Atlantic ridge (Reimer et al. 2014; San-
tos et al. 2019), and the East Atlantic (Reimer et al. 2010). 
Both species have been reported as generalists found in 
diverse environments from the backreef moat to the outer 
reef, and from the intertidal zone to more than 20 m deep 
(Sebens 1982; Yang et al. 2013; Santos et al. 2016, 2019, 
2021; Reimer et al. 2017b). In contrast, the siblings P. mutu-
ki (Haddon & Shackleton, 1891) and P. grandiflora are rela-
tively less abundant than P. tuberculosa and P. caribaeorum, 
respectively, and occur most commonly on intertidal 
reef crests or exposed habitats in both ocean basins (Oi-
gman-Pszczol et al. 2004; Shiroma and Reimer 2010; Irei et 
al. 2011; Santos et al. 2016). Additional ecological studies 
will help to understand if sibling zoantharians share other 
traits, such as reproduction cycles, trophic ecology, and in-
teraction with symbiotic partners (Santos et al. 2021).

Speciation driven by ecological differentiation is docu-
mented in marine habitats (Rocha et al. 2005; Bowen et al. 
2013). However, considering that most zoantharians are 
widely distributed across regions, and might share similar 
traits, it is unlikely that these sibling species result from 
ecological differences between the ATO and IPO. On the 
other hand, processes on a geological time scale are im-
portant in allopatric evolution. Due to the high molecular 
and morphological similarities between the zoantharian 
sibling species, and the widespread species distribution 

within each ocean basin, their ancestors may have had a 
cosmopolitan distribution before the comparatively recent 
separation of the tropical ocean basins, prompting the al-
lopatric processes generating this sibling species pattern.

The vicariant rise of the Panama Isthmus, along with 
the cold Benguela Current in southern Africa, are the most 
likely barriers that lead to the sibling zoantharian pairs and/
or groups. The Isthmus of Panama connects the North 
and South American landmasses and its rise closed the 
tropical exchange between the ATO and IPO via the Cen-
tral American Sea approximately 3.5 mya (Keigwin 1978; 
O’Dea et al. 2016). The Benguela upwelling zone started 
approximately 2 mya and encompass the South Atlantic 
coast of Angola, Namibia, and South Africa (Etourneau 
et al. 2009; Hutchings et al. 2009), and its cold water is 
an environmental barrier to many tropical marine species 
(Floeter et al. 2008). Nevertheless, water exchange from 
the Indian Ocean to the South ATO still occurs due to rings 
and filaments of the warm Agulhas Current that occasion-
ally intrude into the Atlantic (Lutjeharms 1996), possibly 
connecting reef fish populations (Cord et al. 2025). Anoth-
er vicariant event that could have influenced the sibling 
zoantharians’ speciation process was the closure of the 
Tethys Sea. However, this is a much older event (20 to 12 
mya; Dercourt et al. 1986; Cowman and Bellwood 2013b), 
which would have likely resulted in higher genetic differen-
tiation than has been observed from zoantharian siblings.

Main gaps on biogeography of zoantharians

There is no information on the connectivity of zoantharian 
populations at large scales. Studies describing high-qual-
ity whole genomes of Zoantharia species will further sup-
port phylogenomic trees and population genomic analy-
sis. Such work is crucial to clarify how biogeographical 
barriers affect the gene flow and evolution of species and 
populations. Although our study is a first attempt to char-
acterize the morphological similarities of sibling zoantha-
rians, we highlight that additional work on the taxonomy 
and ecology of these species is much needed.

Zoantharians are often overlooked in ecological sur-
veys, and their distributions as reported here are still un-
derestimated. In particular, there is a paucity of research 
in the African coasts (Southeastern Atlantic and Western 
Indian), and Polynesian archipelagos. There is also great 
potential for discovering additional zoantharian species 
within cryptic habitats, such as caves (Kise et al. 2017), 
rubble zones (Fujii and Reimer 2013), and turf (Vaga et al. 
2021). Although deep-sea research in HAW (Sinniger et al. 
2013) and LUS (Carreiro-Silva et al. 2017) provinces have 
reported and described several species, the high diversity 
at these locations could be biased due to a paucity of zo-
antharian research in the mesophotic and deep-sea zones 
across most other provinces (Reimer et al. 2019).

It is most likely that the two current IPO-endemic fam-
ilies, Nanozoanthidae and Neozoanthidae, are cosmo-
politan. Combined with the lack of focused surveys on 
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Zoantharia, species of the family Nanozoanthidae are dif-
ficult to spot due to a pale/translucid color and a small 
polyp size (<1 mm; Fujii and Reimer 2013). Molecular data 
have also pointed that the species Isozoanthus sulcatus 
found off the coast of western Europe likely belongs to 
Nanozoanthidae (Fujii and Reimer 2013). Likewise, phylo-
genetic analyses indicated that the family Neozoanthidae 
should be reassigned to the cosmopolitan family Zoanthi-
dae (Reimer et al. 2011b, 2012b).

At the suborder level, Brachycnemina was recovered as a 
monophyletic group but several phylogenetic studies have 
shown that Macrocnemina is a polyphyletic clade (Sinniger 
et al. 2005; Swain 2010; Fourreau et al. 2023). Our results 
also retrieved Macrocnemina as a polyphyletic group (Fig. 
5). Although our tree showed Parazoanthidae and Sphe-
nopidae (genera Palythoa) as non-molophyletic clades, 
these nodes had poor support, while previous studies have 
endorsed the monophyly of these families (Sinniger et al. 
2005; Poliseno et al. 2019; Forreau et al. 2023). Previous 
studies have also called for research to determine whether: 
(1) the monospecific genus Acrozoanthus is actually within 
Zoanthus (family Zoanthidae; Reimer et al. 2011c); (2) the 
monospecific genus Sphenopus is actually within Palythoa 
(family Sphenopidae; Reimer et al. 2012c; Fujii and Reimer 
2016; Poliseno et al. 2019); (3) the monospecific genus 
Paleozoanthus is actually within Terrazoanthus (families 
Epizoanthidae and Hydrozoanthidae, respectively; Low et 
al. 2016; Fourreau et al. 2023); (4) the monospecific genus 
Thoracactis of the family Epizoanthidae is actually within 
Parazoanthidae (Kise et al. 2024); (5) Isaurus tuberculatus 
Gray, 1828, originally described from the ATO and later re-
ported across the IPO, is likely a sibling species group (yet 
only mitochondrial sequences had been published; Reimer 
et al. 2008); (6) putative P. sp. ‘sakurajimensis’ (IPO) and P. 
aff. clavata (ATO) while not formally described, are part of 
a sibling species clade (Fig. 5); and (7) there are additional 
shallow-water zoantharian species with records from both 
oceans (e.g., Epizoanthus paguricola Roule, 1900 has been 
recorded from ATO and New Zealand, but no molecular 
data are available for these specimens). Lastly, species 
of Palythoa and Zoanthus play a significant ecological role 
in phase shifts from coral to zoantharian-dominated reefs 
(Cruz et al. 2016; Oliveira et al. 2022). With ongoing envi-
ronmental changes, such phase-shifts may become more 
common in coral reefs worldwide (Reimer et al. 2021). 
Filling knowledge gaps on the distributions and biology of 
zoantharians will be essential to support monitoring and 
management of marine ecosystems.

Conclusions

We reported unusual low DNA divergence for zoantharian 
lineages between the ATO and the IPO. Additional research 
is needed to reveal the processes behind this pattern, 
such as investigating whole-genomes of representatives 
of Zoantharia families, which could reveal low rates of 
molecular evolution. At the species level, we hypothesize 

that some zoantharians have evolved generalist niches 
to survive in distinct biogeographical provinces across a 
wide range of environmental conditions, such as nutrition-
al interactions with symbionts (Santos et al. 2021). Some 
species, particularly in Palythoa and Zoanthus, have dis-
persal strategies that allow for broad distributions within 
ocean basins, while the vicariant events of the rise of the 
Isthmus of Panama and the appearance of the Benguela 
Current upwelling likely prompted the speciation of sibling 
lineages between the ATO and the IPO.
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