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Abstract

Biogeographic patterns for marine fishes and scleractinian
stony corals are well-established, but it is still unclear wheth-
er these patterns apply to the understudied marine inverte-
brates. Here we investigate the distribution of zoantharians
(=zoanthids), an order of cnidarians that are distributed
globally from tropical coral reefs to deep temperate oceans.
We examined the available literature, along with new re-
cords and morphological and DNA sequence data, to es-
tablish their first global biogeographical assessment. Two
striking results emerged that contrast with previously known
marine biogeographical patterns. The first was that several
zoantharian genera are cosmopolitan, inhabiting most bio-
geographic provinces within and between ocean basins.
Although the highest diversity was observed in the Indo-Pa-
cific Ocean (IPO), concordant with biogeographic assays of
reef fishes and stony corals, the distribution of genera was
not significantly different between the Atlantic (ATO) and the
IPO. Secondly, there were multiple sibling species complex-
es between the ATO and the IPO. At species and population
scales, a long pelagic larval duration, asexual reproduction
modes, and rafting abilities, may at least partly explain the
low levels of genetic differences between ocean basins.
As some zoantharian species can play a significant role in
phase shifts, filling knowledge gaps on species distributions
is essential to support monitoring of reef ecosystems.

Highlights

+ Our study revealed that several Zoantharia genera,
and most families, are globally distributed.

« This is highly distinct from the pattern previously
observed for common reef animals, such as stony
corals and fishes, where the Indo-Pacific Ocean has
several times the number of familes/genera com-
pared to the Atlantic Ocean.

+ Some zoantharian species, especially in the genera
Palythoa and Zoanthus, have dispersal strategies
that allow for broad distributions within ocean ba-
sins, while the vicariant events of the rise of the Isth-
mus of Panama and the appearance of the Benguela
upwelling likely prompted the speciation of sibling
lineages between the oceans.
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Introduction

Understanding the processes that produce and maintain
biodiversity is one of the main goals of evolutionary biolo-
gists. Parapatry has been suggested as one of the key spe-
ciation mechanisms in the marine realm, occurring when
divergence in alternate habitats can continue in the face
of ongoing gene flow (Gavrilets et al. 2000). Most biogeo-
graphic barriers in the marine realm are soft and species
with extensive larval dispersal abilities may readily tra-
verse such barriers (Rocha and Bowen 2008). For instance,
widespread marine species usually have larvae that are
transported by sea currents across great ocean distanc-
es, with some dispersing for more than 5000 km from the
central to eastern Pacific during El Nifio episodes (Lessios
and Robertson 2006). However, physical barriers cannot
be crossed by marine taxa and may lead to allopatric spe-
ciation via vicariant isolation (Coyne and Orr 2004).

One relatively recent vicariant isolation event was the
rise of the Isthmus of the Panama, which removed the
tropical connection between the Atlantic and Pacific ba-
sins (~3.5 mya; O'Dea et al. 2016). This event led to the
evolution of sibling species pairs in several marine groups,
including fishes and sea urchins (Jordan 1908; Bernardi et
al. 2008; Lessios 2008). However, no such clear pattern has
been observed for benthic cnidarians such as scleractin-
ian stony corals (Fukami et al. 2004) or Millepora fire corals
(Arrigoni et al. 2018). Some stony coral genera have a high
genetic divergence between ocean basins among genera/
families. However, zoantharians (= zoanthids; Cnidaria; An-
thozoa; Zoantharia), hexacorals related to stony corals, are
an exception to this pattern as several sibling species (or
species complexes) inhabit distinct ocean basins yet share
highly similar DNA sequences (Reimer et al. 2010; Reimer et
al. 2012a; Santos et al. 2016; Dudoit et al. 2022). To date, no
detailed investigations of these zoantharian sibling species
across the order have been performed, and their diversity
and overall distributions remain uncertain. Zoantharians
are among the most abundant non-calcifying hexacorals in
shallow-water ecosystems, with colonies of some species
able to cover dozens of square meters in tropical and tem-
perate regions (Burnett et al. 1997; Oigman-Pszczol et al.
2004), and there is also high diversity known from deep to
abyssal waters (Carlgren 1901; Reimer et al. 2007a).

Although biogeographical patterns of many shallow-wa-
ter reef groups such as fishes and stony corals are rela-
tively well-known (Randall 1998; Briggs and Bowen 2012;
Veron et al. 2015; Cowman et al. 2017), zoantharians and
many other marine invertebrates are understudied in most
regions (Knowlton 2001), and this extends especially into
deeper waters (Reimer et al. 2019). An exception to that
is the zoantharian distribution across Atlantic subtropical
and tropical provinces (Santos et al. 2016, 2019), which
have some biogeographic partitions similar to reef fishes
(Floeter et al. 2008), stony corals (Veron et al. 2015), and
fire corals (De Souza et al. 2017). Examples of this concor-
dance among organismal groups include both range limits
and biodiversity patterns: 1) Thermohaline properties of
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South Atlantic water masses may limit the southern dis-
tribution of tropical zoantharians in this region (Santos et
al. 2016), and 2) the Caribbean province is the zoantharian
biodiversity center of the Atlantic, while oceanic islands
have the lowest species richness (Santos et al. 2019). In
contrast to prevailing biogeographic patterns, a lower en-
demism rate among provinces was observed in Atlantic
Zoantharia compared to other common reef groups. The
most widespread species were Palythoa caribaeorum Du-
chassaing & Michelotti, 1860, P grandiflora (Verrill, 1900),
and Zoanthus sociatus (Ellis, 1768), all with amphi-Atlan-
tic distributions (Santos et al. 2019). Despite these ba-
sin-wide efforts, no study has connected the biogeograph-
ic patterns of zoantharians on a global scale.

Due to their wide distribution, zoantharians provide
opportunities to examine evolution at large geographical
scales (Swain 2010; Santos et al. 2019, 2024). The order
has nine families and is subdivided into the suborders
Brachycnemina and Macrocnemina (Fig. 1). Most species
of Brachycnemina are associated with the Symbiodiniace-
ae microalgae (Muscatine and Hand 1958; LaJeunesse et
al. 2018), also known as zooxanthellae, and are restricted
to shallow waters. On the other hand, macrocneminans
have a broader distribution into the deep sea and polar re-
gions, and are mostly azooxanthellate (Swain 2010). Addi-
tionally, several Macrocnemina genera, and one Brachyc-
nemina genus (Acrozoanthus), display epizoic symbioses,
in which the polyps attach to other benthic invertebrates,
including crabs, hydroids, octocorals, sponges, or tubes
of polychaete worms (West 1979; Sinniger et al. 2010;
Swain 2010; Kise et al. 2023). These associations are of-
ten obligatory, and the zoantharian species is only found
associated with a specific genus or family of invertebrate
hosts. For example, Umimayanthus chanpuru Montenegro,
Sinniger & Reimer, 2015 is always associated with spong-
es, while Epizoanthus illoricatus Tischbierek, 1930 is only
found growing on eunicid worm tubes.

Herein, we used morphological and molecular data
combined with a comprehensive literature review to in-
vestigate the global biogeography of Zoantharia. We also
aimed to indicate which are the zoantharian sibling spe-
cies complex between the Atlantic (ATO) and the Indo-Pa-
cific (IPO) ocean basins. We then discussed hypotheses
of how ecological traits influence dispersal and evolution
of zoantharians in (primarily) shallow and (where possi-
ble) deep waters, illuminating the processes that led to
these biogeographical patterns.

Methods

Shallow water and deep-sea surveys

Surveys were conducted using snorkeling or SCUBA diving at
depths of 0 to 40 m in five regions: Yucatan, Mexico (2013),
Hong Kong, Hong Kong SAR (2015 and 2024), Cebu, Phil-
ippines (2017), South Africa (2019), Bali, Indonesia (2019
and 2024) and Kenting, Taiwan (2024). Whenever possible,
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Figure 1. Representatives of the nine zoantharian families. Abyssoanthidae (A. Abyssoanthus convallis Reimer & Sinniger, 2010); Epizo-
anthidae (B. Epizoanthus paguricola Roule, 1900 associated with a hermit crab), Hydrozoanthidae (C. Hydrozoanthus gracilis (Lwowsky,
1913) with hydrozoan), Microzoanthidae (D. Microzoanthus sp.), Nanozoanthidae (E. Nanozoanthus), Neozoanthidae (F. Neozoanthus
uchina Reimer, Irei &. Fujii, 2012), Parazoanthidae (G. Parazoanthus swiftii (Duchassaing de Fonbressin & Michelotti, 1860) symbiotic
with sponges), Sphenopidae (H. Palythoa tuberculosa (Esper, 1805)), and Zoanthidae (l. Zoanthus sociatus (Ellis, 1768)). Image credits:
JD Reimer (A and E), T Moritaki (B), MEA Santos (C, F, and I), T Fujii (D), and MV Kitahara (G and H).

we followed the roving observer technique to observe as
many species as possible (Schmitt et al. 2002). Addition-
ally, in situ high-resolution images were taken, and a small
fragment of the colony was collected (non-lethal sampling)
and preserved in 90-99% ethanol for further analyses (Sup-
pl. material 1). We also examined zoantharian specimens
deposited at the Bernice Pauahi Bishop Museum (BPBM) in
O‘ahu, Hawai'i. To improve the understanding of deep-sea
(>200 m) zoantharians, we investigated specimens deposit-
ed at the Smithsonian National Museum of Natural History
(SNMNH) collected by the Okeanos 2016 expedition in the
Pacific Ocean, and at the National Museum of Rio de Janei-
ro (MNRJ) collected in Brazilian waters (Suppl. material 1).

Literature review and biogeographical
analyses

We compiled records of Zoantharia for global marine bio-
geographical provinces (Suppl. material 2). We followed
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the provinces as described in Briggs and Bowen (2012)
because this work has a special focus on reef ecosys-
tems, and the provinces defined by >10% endemism align
well with phylogeographic breaks recovered in fishes and
crustaceans (Bowen et al. 2016; lacchei et al. 2016). Due
to the high number of inadvertent Zoantharia species re-
descriptions combined with a lack of surveys focusing on
this group (Burnett et al. 1997; Hibino et al. 201343, b; San-
tos et al. 2019), data were analyzed at the taxonomic level
of families and genera, and not to species level. We then
summarized the relationship among global biogeographi-
cal provinces based on the number of shared zoantharian
taxa common to the pair of areas using Jaccard dissim-
ilarity index (Jaccard 1908) and Unweighted Pair Group
Method with Arithmetic Mean (Sneath and Sokal 1973).
We also applied a non-metric multidimensional scaling
analysis (nMDS) of the dissimilarity distances to plot sim-
ilarities in zoantharian composition by ocean basin (ATO
or IPO) and seawater temperature (tropical or temperate).
Statistical differences were tested with pairwise Adonis
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(Martinez Arbizu 2020) with the package vegan 2.6-10
(Oksanen et al. 2025). Due to the patchiness of deep-sea
data (Reimer and Sinniger 2010; Carreiro-Silva et al. 2017,
Reimer et al. 2019b), we focused analyses of the bioge-
ography and sibling species complexes only in the shal-
low-water data.

Morphology, phylogenetic analyses, and
sibling species complexes

Morphology was used to identify zoantharian specimens
to the lowest taxonomic level possible using the follow-
ing characters: number of tentacles, size range of oral
disk, oral disk color, and form of the polyp as ‘libera€’,
‘intermedia€’, or ‘immersae’ (Pax 1910; West 1979; Bur-
nett et al. 1997; Reimer 2010; Reimer et al. 2013). Addi-
tionally, we retrieved molecular sequences from NCBI for
the most common markers for Zoantharia: mitochondrial
cytochrome oxidase subunit | (COI) and 16S ribosomal
DNA (16S rDNA), and the nuclear ribosomal internal tran-
scribed spacer (ITSrDNA). The sequences and species are
listed in Suppl. material 3. We selected mainly sequenc-
es from previous authors’ publications, and for which we
were confident in species identifications (e.g. had vouch-
er specimens). Sequences were aligned using Geneious
v8.1 (Kearse et al. 2012), using the global alignment tool
with free-end gaps and default settings. A concatenated
alignment was generated and missing data was replaced
with “N” (excluding gaps). All output alignments were vi-
sually inspected and manually curated, totaling 120 se-
quences and 3,219 sites. Phylogenetic reconstructions
were performed using this concatenated alignment for
maximum-likelihood (ML; 1000 bootstrap replicates) in
Geneious v8.1, with the GTR model of nucleotide substi-
tution as selected using TOPALi v2.5 (Milne et al. 2009).
The newick dataset is available at the Figshare reposito-
ry (https://doi.org/10.6084/m9.figshare.30811127). We
defined a sibling species complex in the phylogeny as
sister clades composed of at least one ATO and one IPO
species (or species’ group) that had a similar overall mor-
phology (partial or total overlap of at least three out of the
four following traits: number of tentacles, size range of
oral disk, oral disk color, and form of the polyp). Morpho-
logical characters for described species and distribution
data were compiled from the literature and newly collect-
ed specimens (Suppl. material 4).

Results
Biogeography of zoantharians

Our results revealed that 6 out of the 8 Zoantharia
families reported in shallow-waters were cosmopoli-
tan (Figs 2, 3; Suppl. material 2), with the exception of
Nanozoanthidae and Neozoanthidae, which, so far, only
have been reported in the IPO (but see Discussion; they
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are most likely also distributed in the ATO). The diversity
center for Zoantharia in shallow waters was the INP prov-
ince in the Central IPO (Fig. 2A, B). Within the ATO, CAR
was the province with the highest diversity. However, a
different pattern is observed for deep waters (Fig. 2C, D)
where the most diverse provinces were SNJ (7 genera),
LUS (6), and HAW (5).

With the exception of the families Abyssoanthidae,
Epizoanthidae, and Parazoanthidae, zoantharians were
restricted to shallow waters (Fig. 3). Parazoanthidae
was the most diverse family (16 genera) and the most
widely distributed, with reports across 19 provinces
(Figs 3, 4). Of the 31 Zoantharia genera, 14 were found
only in shallow waters, 11 only in deep waters, and 6
across both depth zones (Suppl. material 2). Among the
20 genera observed in shallow waters, 6 were so far
only reported to the IPO and one to the ATO.

The clustering of shallow biogeographical provinc-
es retrieved two main groups; one with all warm global
provinces, in addition to the temperate provinces AGU,
COR, and LUS, and the other with the remaining temper-
ate/polar provinces (Fig. 4). Adonis analyses showed
no significant differences in the composition of genera
and families between the ATO and IPQ, yet tropical and
temperate provinces had significant differences (Suppl.
material 5).

Phylogeny and sibling species complexes

The phylogenetic reconstruction confirmed that the sub-
order Brachynemina is monophyletic (families Neozoan-
thidae, Sphenopidae, and Zoanthidae), while the suborder
Macrocnemina (families Epizoanthidae, Hydrozoanthidae,
Microzoanthidae, Nanozoanthidae, and Parazoanthidae)
is paraphyletic with the family Hydrozoanthidae residing
within brachycnemic zoantharians (Fig. 5). Although the
family Abyssoanthidae is not assigned to any suborder,
species were phylogenetically within Macrocnemina. At
least four shallow-water families had sibling species com-
plexes (Suppl. material 4).

In the suborder Brachycnemina, three genera from
two families had species reported in ATO and IPO.
These three genera had sibling species groups: Paly-
thoa from the family Sphenopidae, and Zoanthus and
most likely Isaurus (discussed below) from Zoanthidae
(Fig. 6; Suppl. material 4). The suborder Macrocnemina
had at least two sibling species groups, one from the
family Hydrozoanthidae and another from Parazoanthi-
dae. With the exception of Hydrozoanthus antumbrosus
(Swain 2009), which has so far only been reported in the
CAR, zoantharian sibling species had extensive distri-
butions including at least two biogeographic provinces.
The sibling pair P. caribaeorum (ATO) and P. tuberculo-
sa (Esper, 1805) (IPO) had the most extensive distribu-
tion among zoantharians analyzed herein, with reports
across all tropical and subtropical provinces (Fig. 6,
Suppl. material 4).
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Figure 2. Global distribution of zoantharians. Total number of families and genera in shallow (A and B) and deep waters (C and D). Colors
represent the number of families/genera reported for each province. Subtropical and tropical provinces were Ascension (ASC), Brazilian
(BRA), Caribbean (CAR), Lusitania (LUS), Saint Helena (STH), Tropical Eastern Atlantic (TEA), Galapagos (GAL), Hawaiian (HAW), Indo-Poly-
nesian (INP), Red Sea (RES), Sino-Japanese (SNJ) and Western Indian Ocean (WIN), while in temperate/polar waters were Agulhas Province
(AGU), Antarctic Province (ANT), California (CAL), Cortez (COR), Easter Atlantic Boreal (EAB), Falkland Islands (FAL), Juan Fernandez (JUF),
Oregon (ORE), Panamanian (PAN), Peru-Chilean (PEC), Southeastern Australian (SOA), Southern Chile (SOC), and Tierra del Fuego (TIF).

Discussion hotspot in the INP province (Fig. 2A, B), similarly to glob-
al patterns observed for marine fishes, corals, and mac-
Global marine biogeography roinvertebrates (Roberts et al. 2002; Bowen et al. 2013;

Briggs and Bowen 2013; Veron et al. 2015). Nevertheless,

We observed a higher diversity of Zoantharia in shallow the composition of genera and families between the IPO
waters in the IPO compared to the ATO, with the global and ATO was not significantly different (Fig. 4 and Suppl.
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material 5), contrasting with prevailing biogeographical
patterns that indicate strong vicariance between these
ocean basins (Cowman and Bellwood 2013; Costello et al.
2017). Most, if not all, zoantharian families had a global
distribution in shallow waters, which is remarkable and
distinct from most other common marine animals.

We hypothesize that low or moderate genetic diver-
sity may partially explain this pattern of low divergence
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between ocean basins. Anomalously low mutation rates
have been observed in a diversity of taxa including plants
(Wolf et al. 1987; Xu et al. 2019), cnidarians (Tseng et
al. 2005) and vertebrates (Avise et al. 1992; Feng et al.
2017). A low mtDNA mutation rate may prevail in most
anthozoan orders, including stony corals and zoantha-
rians (Shearer et al. 2002; Huang et al. 2008). Likewise,
hybridization and incomplete lineage sorting may obscure
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Figure 5. Phylogeny of the order Zoantharia. Phylogenetic tree obtained from a concatenated alignment of the mitochondrial markers
of COI, 16S-rDNA, and the nuclear ITS-rDNA. Values at nodes represent ML bootstrap values >75%, respectively. Species distributed in
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evolutionary relationships for many Palythoa and Zoan-
thus lineages (Reimer et al. 2007b; Shiroma and Reimer
2010; Mizuyama et al. 2018), as well as for some stony
coral species (Vollmer and Palumbi 2002; Johnston et al.
2017; Terraneo et al. 2025). Additionally, many Zoantharia
lineages have evolved high ecological plasticity, adapting
to distinct habitats/environment settings. For instance,
endosymbiosis with Symbiodiniaceae and epizoism have
been gained and lost multiple times in several distinct
genera/families (Swain 2010; Kise et al. 2023). However,
genomic studies of zoantharians are still scarce (Fourreau
et al. 2023; Yoshioka et al. 2024), hampering our ability
to compare their gene repertoire with other groups such
as stony corals. For example, the evolutionary mecha-
nisms that promote a lower mutation rate in zoantharian
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lineages, and/or facilitate generalist ecological strategies.
Therefore, further research on this topic is needed to shed
light on the puzzling evolution of Zoantharia and the ap-
parent unusual low levels of DNA evolutionary rates be-
tween the IPO and ATO.

Which processes might have driven the
sibling species pattern?

There was a striking pattern in zoantharians having sibling
evolutionary lineages between ocean basins (Figs 5, 6),
which is far different from that observed in stony corals
and fire corals (Fukami et al. 2004; Arrigoni et al. 2018).Ina
genetic survey of 35 marine vertebrates and invertebrates,
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Selkoe et al. (2014) reported that at most 50% of popula-
tion dispersal could be attributed to pelagic larval duration
(PLD). Research on zoantharian PLDs is limited, but an
extended planktonic larval phase of more than 100 days
is known for P. tuberculosa (Polak et al. 2011). Plankton
tows also indicate long PLDs for the families Sphenopidae
and Zoanthidae (Ryland et al. 2000). Asexual reproduction
may promote local dispersal and increase substrate oc-
cupancy (Ryland 1997), and this trait has been described
for genera such as Palythoa, Parazoanthus, and Zoanthus
(Garrabou 1999; Acosta et al. 2005a; Acosta and Gonzalez
2007). Additionally, some zoantharians have a high raft-
ing potential (Santos and Reimer 2018). Many coastal
organisms, including stony corals and reef fishes, are
able to disperse for hundreds to thousands of kilometers
attached to drift material such as volcanic pumice, sea-
weed, logs, or man-made objects (Jokiel 1990; Hoeksema
et al. 2012). Combined, a long PLD, asexual reproduction
modes, and rafting, at least partly explain the apparent low
levels of genetic differentiation between ocean basins and
the widespread distribution of several species (Fig. 6).
The low molecular and morphological divergence ob-
served between zoantharian sibling species may also re-
flect a similar use of resources (e.g., related niches). For
example, P tuberculosa is often the most abundant zoan-
tharian in shallow waters of the IPO, including Okinawa (Irei
et al. 2011; Yang et al. 2013), Taiwan (Reimer et al. 20113;
Reimer et al. 2017a), Malaysia (Wee et al. 2017), and Red
Sea (Reimer et al. 2017b). A similar trend was observed in
the ATO sibling P. caribaeorum, which is widespread along
the Brazilian and Caribbean coasts (Suchanek and Green
1981; Acosta et al. 2005b; Santos et al. 2016; Reimer et
al. 2018), the Mid-Atlantic ridge (Reimer et al. 2014; San-
tos et al. 2019), and the East Atlantic (Reimer et al. 2010).
Both species have been reported as generalists found in
diverse environments from the backreef moat to the outer
reef, and from the intertidal zone to more than 20 m deep
(Sebens 1982; Yang et al. 2013; Santos et al. 2016, 2019,
2021; Reimer et al. 2017b). In contrast, the siblings P mutu-
ki (Haddon & Shackleton, 1891) and P, grandiflora are rela-
tively less abundant than P. tuberculosa and P, caribaeorum,
respectively, and occur most commonly on intertidal
reef crests or exposed habitats in both ocean basins (Oi-
gman-Pszczol et al. 2004; Shiroma and Reimer 2010; Irei et
al. 2011; Santos et al. 2016). Additional ecological studies
will help to understand if sibling zoantharians share other
traits, such as reproduction cycles, trophic ecology, and in-
teraction with symbiotic partners (Santos et al. 2021).
Speciation driven by ecological differentiation is docu-
mented in marine habitats (Rocha et al. 2005; Bowen et al.
2013). However, considering that most zoantharians are
widely distributed across regions, and might share similar
traits, it is unlikely that these sibling species result from
ecological differences between the ATO and IPO. On the
other hand, processes on a geological time scale are im-
portant in allopatric evolution. Due to the high molecular
and morphological similarities between the zoantharian
sibling species, and the widespread species distribution
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within each ocean basin, their ancestors may have had a
cosmopolitan distribution before the comparatively recent
separation of the tropical ocean basins, prompting the al-
lopatric processes generating this sibling species pattern.

The vicariant rise of the Panama Isthmus, along with
the cold Benguela Current in southern Africa, are the most
likely barriers that lead to the sibling zoantharian pairs and/
or groups. The Isthmus of Panama connects the North
and South American landmasses and its rise closed the
tropical exchange between the ATO and IPO via the Cen-
tral American Sea approximately 3.5 mya (Keigwin 1978;
O’Dea et al. 2016). The Benguela upwelling zone started
approximately 2 mya and encompass the South Atlantic
coast of Angola, Namibia, and South Africa (Etourneau
et al. 2009; Hutchings et al. 2009), and its cold water is
an environmental barrier to many tropical marine species
(Floeter et al. 2008). Nevertheless, water exchange from
the Indian Ocean to the South ATO still occurs due to rings
and filaments of the warm Agulhas Current that occasion-
ally intrude into the Atlantic (Lutjeharms 1996), possibly
connecting reef fish populations (Cord et al. 2025). Anoth-
er vicariant event that could have influenced the sibling
zoantharians’ speciation process was the closure of the
Tethys Sea. However, this is a much older event (20 to 12
mya; Dercourt et al. 1986; Cowman and Bellwood 2013b),
which would have likely resulted in higher genetic differen-
tiation than has been observed from zoantharian siblings.

Main gaps on biogeography of zoantharians

There is no information on the connectivity of zoantharian
populations at large scales. Studies describing high-qual-
ity whole genomes of Zoantharia species will further sup-
port phylogenomic trees and population genomic analy-
sis. Such work is crucial to clarify how biogeographical
barriers affect the gene flow and evolution of species and
populations. Although our study is a first attempt to char-
acterize the morphological similarities of sibling zoantha-
rians, we highlight that additional work on the taxonomy
and ecology of these species is much needed.

Zoantharians are often overlooked in ecological sur-
veys, and their distributions as reported here are still un-
derestimated. In particular, there is a paucity of research
in the African coasts (Southeastern Atlantic and Western
Indian), and Polynesian archipelagos. There is also great
potential for discovering additional zoantharian species
within cryptic habitats, such as caves (Kise et al. 2017),
rubble zones (Fujii and Reimer 2013), and turf (Vaga et al.
2021). Although deep-sea research in HAW (Sinniger et al.
2013) and LUS (Carreiro-Silva et al. 2017) provinces have
reported and described several species, the high diversity
at these locations could be biased due to a paucity of zo-
antharian research in the mesophotic and deep-sea zones
across most other provinces (Reimer et al. 2019).

It is most likely that the two current IPO-endemic fam-
ilies, Nanozoanthidae and Neozoanthidae, are cosmo-
politan. Combined with the lack of focused surveys on
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Zoantharia, species of the family Nanozoanthidae are dif-
ficult to spot due to a pale/translucid color and a small
polyp size (<1 mm,; Fujii and Reimer 2013). Molecular data
have also pointed that the species Isozoanthus sulcatus
found off the coast of western Europe likely belongs to
Nanozoanthidae (Fujii and Reimer 2013). Likewise, phylo-
genetic analyses indicated that the family Neozoanthidae
should be reassigned to the cosmopolitan family Zoanthi-
dae (Reimer et al. 2011b, 2012b).

Atthe suborder level, Brachycnemina was recovered as a
monophyletic group but several phylogenetic studies have
shown that Macrocnemina is a polyphyletic clade (Sinniger
et al. 2005; Swain 2010; Fourreau et al. 2023). Our results
also retrieved Macrocnemina as a polyphyletic group (Fig.
5). Although our tree showed Parazoanthidae and Sphe-
nopidae (genera Palythoa) as non-molophyletic clades,
these nodes had poor support, while previous studies have
endorsed the monophyly of these families (Sinniger et al.
2005; Poliseno et al. 2019; Forreau et al. 2023). Previous
studies have also called for research to determine whether:
(1) the monospecific genus Acrozoanthus is actually within
Zoanthus (family Zoanthidae; Reimer et al. 2011¢); (2) the
monospecific genus Sphenopus is actually within Palythoa
(family Sphenopidae; Reimer et al. 2012c; Fujii and Reimer
2016; Poliseno et al. 2019); (3) the monospecific genus
Paleozoanthus is actually within Terrazoanthus (families
Epizoanthidae and Hydrozoanthidae, respectively; Low et
al. 2016; Fourreau et al. 2023); (4) the monospecific genus
Thoracactis of the family Epizoanthidae is actually within
Parazoanthidae (Kise et al. 2024); (5) Isaurus tuberculatus
Gray, 1828, originally described from the ATO and later re-
ported across the IPQ, is likely a sibling species group (yet
only mitochondrial sequences had been published; Reimer
et al. 2008); (6) putative P. sp. ‘sakurajimensis’ (IPO) and P
aff. clavata (ATO) while not formally described, are part of
a sibling species clade (Fig. 5); and (7) there are additional
shallow-water zoantharian species with records from both
oceans (e.g., Epizoanthus paguricola Roule, 1900 has been
recorded from ATO and New Zealand, but no molecular
data are available for these specimens). Lastly, species
of Palythoa and Zoanthus play a significant ecological role
in phase shifts from coral to zoantharian-dominated reefs
(Cruz et al. 2016; Oliveira et al. 2022). With ongoing envi-
ronmental changes, such phase-shifts may become more
common in coral reefs worldwide (Reimer et al. 2021).
Filling knowledge gaps on the distributions and biology of
zoantharians will be essential to support monitoring and
management of marine ecosystems.

Conclusions

We reported unusual low DNA divergence for zoantharian
lineages between the ATO and the IPO. Additional research
is needed to reveal the processes behind this pattern,
such as investigating whole-genomes of representatives
of Zoantharia families, which could reveal low rates of
molecular evolution. At the species level, we hypothesize
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that some zoantharians have evolved generalist niches
to survive in distinct biogeographical provinces across a
wide range of environmental conditions, such as nutrition-
al interactions with symbionts (Santos et al. 2021). Some
species, particularly in Palythoa and Zoanthus, have dis-
persal strategies that allow for broad distributions within
ocean basins, while the vicariant events of the rise of the
Isthmus of Panama and the appearance of the Benguela
Current upwelling likely prompted the speciation of sibling
lineages between the ATO and the IPO.
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Supplementary materials

Supplementary material 1

ESM table S1: Sampling information. We conducted
surveys using snorkeling and SCUBA diving at depths
between 0—-40 m following the roving technique to
observe as many species as possible in the following
locations: Yucantan, Mexico (2013 and 2017), Hong
Kong, Hong Kong SAR (2015 and 2024), Cebu,
Philippines (2017), Bali, Indonesia (2019) and Kenting,
Taiwan (2024). Whenever possible, in situ high-resolution
images were taken and samples were collected and
preserved in 90-99% ethanol for further analyses. We
also examined specimens from the Smithsonian National
Museum of Natural History (SNMNH), Museu Nacional
do Rio de Janeiro (MNRJ), Brazil, and Bernice Pauahi
Bishop Museum (BPBM), Hawai'i (.xIsx)

Link: https://doi.org/10.21425/fob.19.174247 .suppl1

Supplementary material 2

ESM table S2: Compiled records of Zoantharia for 25
global marine biogeographical provinces for shallow and
deep waters. Subtropical and tropical provinces were
Ascension (ASC), Brazilian (BRA), Caribbean (CAR),
Lusitania (LUS), Saint Helena (STH), Tropical Eastern
Atlantic (TEA), Galapagos (GAL), Hawaiian (HAW), Indo-
Polynesian (INP), Red Sea (RES), Sino-Japanese (SJA) and
Western Indian Ocean (WIN), while in temperate waters
were Agulhas Province (AGU) Tierra del Fuego (TIF) and
Falkland Islands (FAL), California (CAL), Cortez (COR),
Juan Fernandez (JUF), Panamanian (PAN), Peru-Chilean
(PEC), Southern Chile (SOC), and Southeastern Australian
(SOA), and the cold temperate Antarctic (ANT), Eastern
Atlantic Boreal (EAB), and Oregon (ORE) provinces (.xlsx)
Link: https://doi.org/10.21425/f0b.19.174247 .suppl2
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Supplementary material 3

ESM table S3: GenBank accession numbers of the
zoantharian sequences used in this study (.xlIsx)
Link: https://doi.org/10.21425/fob.19.174247 .suppl3

Supplementary material 4

ESM table S4: List of zoantharian sibling species

along with their associated Symbiodiniaceae, and
morphological and distribution data. Morphological
data examined in this study (polyp form, oral disk color,
and tentacle number) are shown in bold. Subtropical
and tropical provinces were Ascension (ASC), Brazilian
(BRA), Caribbean (CAR), Lusitania (LUS), Saint Helena
(STH), Tropical Eastern Atlantic (TEA), Galapagos
(GAL), Hawaiian (HAW), Indo-Polynesian (INP), Red Sea
(RES), Sino-Japanese (SNJ) and Western Indian Ocean
(WIN), while in temperater warm were Agulhas Province
(AGU) Tierra del Fuego (TIF) and Falkland Islands (FAL),
California (CAL), Cortez (COR), Juan Fernandez (JUF),
Panamanian (PAN), Peru-Chilean (PEC), Southern Chile
(SOC), and Southeastern Australian (SOA), and the cold
temperate/polar provinces Antarctic (ANT) and Oregon
(ORE) provinces (.docx)

Link: https://doi.org/10.21425/fob.19.174247 .suppl4
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Supplementary material 5

ESM table S5: Summary of the Adonis results for the
distribution of zoantharians in shallow waters tested for
Ocean (Atlantic or Indo-Pacific) and localities (Temp;
tropical or temperate provinces). Test under reduced
model with 999 permutations. Signif. codes: 0 “***'
0.001 **'0.01 *" 0.05 ‘. 0.1 *" 1 (.xIsx)

Link: https://doi.org/10.21425/fob.19.174247 .suppl5
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