論文要旨

論文題目

Inhibition by ethyl pyruvate of the nuclear translocation of nuclear factor-κB in cultured lung epithelial cells

(ヒト肺上皮細胞におけるEthyl Pyruvate によるNF-κBの核内移行抑制)
論文要旨

【背景】Ethyl pyruvate（EP）はin vitroおよびin vivoにおいて抗炎症効果を示すことが報告されている。Lipopolysaccharide刺激ラットにおいて、EPはIL-6や誘導型一酸化窒素合成酵素の発現を抑制し、生存期間を延長させる（Venkataraman et al., 2002）。EPの抗炎症効果の機序として、Nuclear factor-kappa B (NF-κB)の活性化の抑制作用が報告されている。しかし、その分子機構については不明である。

【目的】サイトカインの一つであるTumor necrosis factor α (TNFα)は、NF-κBを活性化することが知られている。本研究では、急性肺障害の治療を目的として、肺胞上皮細胞の培養株細胞を用いた検討を行った。ヒト肺腺癌細胞由来のA549細胞は、Ⅱ型肺胞上皮細胞様の特徴を有する。今回、A549細胞を用いてTNFα刺激によるNF-κBの活性化に対するEPの作用とその分子機構を検討した。

【方法・結果】①A549細胞にNF-κBルシフェラーゼレポーター遺伝子を導入し、TNFα刺激によるNF-κBの活性化を検討した。NF-κB活性は
TNFα刺激により約7.5倍に増加した。TNFα刺激時のNF-κBの活性を100%とすると、5mMのEPでは51.8±9.4%に、10mMでは17.9±1.8%に抑制された。②免疫ブロット法により、IκBαのリン酸化とタンパク量の変化を検討した。TNFα刺激後15分以内にIκBαのリン酸化と分解が認められた。30分後からIκBαのタンパク量が増加した。EPは、15分以内のIκBαのリン酸化と分解には影響を与えなかったが、30分後からのIκBαのタンパク量の増加を抑制した。③RT-PCR法により、IκBαのmRNAの変化を検討した。mRNAはTNFα刺激後10分で増加した。この増加は、EPの添加で完全に抑制された。④A549細胞の核抽出液を用いてRelAの核内移行を免疫ブロット法により検討した。TNFα刺激後5分以内にRelAの核内移行が認められた。EPはRelAの核内移行を強く抑制した。⑤ゲルシンプロットアッセイ法により、核抽出液を用いて、NF-κBとDNAの結合を検討した。TNFα刺激によりNF-κBとDNAの結合は増加し、EPにより75.3±11.9%に抑制された。NF-κBの各サブユニットに
対する抗体を用いたスーパーシフトアッセイにより、NF-κB複合体はRelAとp50から成ることが認められた。

【考察】これまでに、EPの抗炎症効果にはNF-κBシグナル経路の抑制が関与することが示唆されていた。本研究により、EPによるNF-κBシグナル経路の抑制の分子機構として、EPがTNFαによるRelAの核内移行を抑制することが初めて明らかになった。現在、この核内移行の抑制の分子機構については不明であるが、EPによりRelAのシステイン残基が化学修飾を受けることを示唆する報告もある。最近、私たちは、精製したRelAがEPによりin vitroで立体構造変化を受けるという結果を得ている。

今回の検討により、EPはNF-κBシグナル経路の活性化が重要な役割を持つ炎症において、有効な抗炎症薬となる可能性が示唆された。
論文審査結果の要旨

<table>
<thead>
<tr>
<th>報告番号</th>
<th>課題博士論文</th>
<th>第58号</th>
<th>氏名</th>
<th>水谷文子</th>
</tr>
</thead>
<tbody>
<tr>
<td>論文審査委員</td>
<td>検査日</td>
<td>平成22年4月28日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>主査教授</td>
<td>藤谷研一</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>副査教授</td>
<td>萩部久男</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>副査教授</td>
<td>澤口昭一</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（論文題目）
Inhibition by ethyl pyruvate of the nuclear translocation of nuclear factor-κB in cultured lung epithelial cells (ヒト肺上皮細胞におけるEthyl pyruvateによるNF-κBの核内移行抑制)

（論文審査結果の要旨）

1. 研究の背景と目的

Ethyl pyruvate (EP)はin vitro、in vivoにおいて様々な抗炎症効果を示し、その作用機序の1つとしてnuclear factor-kappa B (NF-κB)経路の活性化の抑制が報告されている。本研究では、肺上皮細胞線の特徴を有するA549細胞を用いて、TNFα刺激によるNF-κB経路の活性化に対するEP的作用とその分子機構について検討した。

2. 研究結果

ルシファーゼ活性測定法によって、TNFα刺激によるNF-κB経路の活性化が確認できた。EPにより、濃度依存性にこの活性化は抑制された。この抑制作用は、ピルビン酸やエタノールではみられず、EPに特異的であった。

次に、この抑制の分子機構を検討した。1) Western blot法において、IkBaのタンパク量とリン酸化の程度は、EP存在下でも、TNFα刺激のみの場合と比べ、15分以内では変化がみられなかった。したがって、EPの作用は、IkBaのリン酸化やユビキチン化および分解の抑制ではないことが明らかとなった。2) NF-κB経路の活性化によるIkBaのmRNAとタンパク量の増加が、EPによって強く抑制された。3) TNFα刺激によるNF-κBの核内移行が抑制された。また、ゲルシフトアッセイ法により、DNAとの結合も減少していることが明らかとなった。抗体添加によるスーパーシフトから、NF-κBは、RelA/p50の複合体であることが確認された。

3. 研究の意義と学術的水準

以上の結果から、EPはNF-κB経路の活性化を抑制すること、およびその分子機構としてRelA/p50複合体の核内移行を抑制することが明らかとなった。EPは前臨床試験で、抗炎症効果を示すことが知られており、本研究で得られた知見は、EPの臨床応用をめざすうえで重要であると考えられる。

以上の結果から、本論文は学位授与に十分値するものと判断した。

備考
1. 用紙の規格は、A4とし縦にして左横書きとすること。
2. 要旨は800字～1200字以内にまとめること。
3. *印は記入しないこと。